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Abstract

This study examines the effect of the electrical and magnetic field which is applied perpendicular to the flow and each other on the two-
phase steady flow in a glass pipe. Micron-sized iron powder, which are highly conductive, magnetizable, are used for the first phase of the
fluid and then pure water which is not magnetizable and has very low electrical conductivity is used for the second phase. The mathe-
matical model is derived by adding a term representing the impact of electro-magnetic force to the momentum equation of the multi-
phase fluids in the interactive magnetizable phase. The derived model is analytically solved by using the methods of Laplace and D’Alam-
bert. According to obtained results, when only magnetic and electrical fields are applied perpendicular to the flow of the mixture, local
flow velocity of the first phase is decreased due to the direct effect of the magnetic field. The second phase local flow velocity is decreased
due to the indirect effect of the magnetic field which is caused by the interaction of the phases. As a result, it is seen that the electromag-
netic force is effecting the nonconductor phase of the mixture through the conductor phase which it can directly affect.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Two-phase flow of fluid–solid is used in many fields like
mining, agriculture, chemistry and food technologies. In
these flows, it is very important to know the velocity and
flow rate of fluid and the quantity of solid substance. There
are many researches on two-phase mixtures of fluid–solid
and various mathematical models are developed to exam-
ine their steady/unsteady flows.

Badr et al. (2005) have found the amount of solid mate-
rial in various diameters and various velocity in two-phase
liquid–solid flow by building a three-dimensional mathe-
matical model depending on the amount of solid material
and liquid velocity in a vertical pipe where there is sudden
diameter change. Zhang et al. (2004) have solved the model
which they have built for liquid–solid dimensional flow and
compared it with experimental results. Chamkha (2000),
0142-727X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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investigated unsteady laminar flow and heat transfer of a
particulate suspension in an electrically conducting liquid
through channels and circular pipes in the presence of a
uniform transverse magnetic field which is formulated
using a two-phase continuum model. The general govern-
ing equations of motions are solved in closed form in terms
of Fourier cosine and Bessel functions and the energy equa-
tions for both phases are solved numerically. Elbashbeshy
(2000), studied a viscous incompressible liquid flow along
a heat vertical plate, taking into account the variation of
the viscosity and thermal diffusivity with temperature in
the presence of the magnetic field. The governing equations
for laminar free convection of liquid are changed to dimen-
sionless ordinary differential equations by similarity trans-
formation. They are solved by a shooting method
numerically. The unsteady laminar boundary layer flow
of an electrically conducting liquid past a semi-infinite flat
plate with an aligned magnetic field has been studied
Takhar et al. (1999). The effect of the induced magnetic
field has been included in the analysis. The non-linear
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Nomenclature

~B induction of magnetic field vector (T)
~E electrical field intensity vector ðV=mÞ
f1, f2 substance quantity of mixture in unit volume

(f1 + f2 = 1)
Io modified Bessel function
~H magnetic filed intensity vector ðA=MÞ
K interaction coefficient (kgs/m4)
N pressure gradient
P pressure (Pa)
R radius (m)
r radial coordinate
s Laplace operator

t time (s)
u1, u2 axial local velocity component (m/s)
U1, U2 Laplace transformation of axial local velocity

component (m/s)
~V 1; ~V 2 phase velocity vector (m/s)
z Axial coordinate
D Laplasian
g magnetic filed parameter of first phase
l1, l2 dynamic viscosity (kg/ms)
q1, q2 density (kg/m3)

z

Bo
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partial differential equations have been solved numerically
using an implicit finite-difference method. Kuzhir et al.
(2005) investigated ferromagnetic suspension flows through
a capillary placed between two small strong permanent
magnets, the magnetic force acts upon the non-magnetic
(silica) particles dispersed in a ferrofluid and they tend to
be extruded from the zone of high magnetic field. Particles
get concentrated at the entrance section between magnets
and form a plug. The increase of hydraulic resistance is
due to the relative motion between particulate and ferro-
fluid phases in the presence of a field. Ishimoto and Kamiy-
ama (1997) studied the effect of nonuniform magnetic field
on the linear and nonlinear wave propagation phenomena
in two-phase pipe flow of magnetic fluid which is investi-
gated theoretically to realize the effective energy conversion
system using boiling two-phase flow of magnetic fluid. The
governing equations of two-phase flow are numerically
analyzed by using the finite volume method. Sellers and
Walker (1999) presented a model for the steady liquid–
metal flow through a rectangular duct with electrically
insulated walls and with an externally applied, spatially
variable, transverse magnetic field.

One of the models examining unstable movements of
multi-phase fluids is the model of the movements of the
interacting phases. This model is developed by Rahmatulin
(1956), improved by Fayzullayev (1966), Latipov (1963)
and other scientists. According to this model, each phase
of the mixture has local velocity and constant (real or
imaginary) physical attributes. The phases interact mutu-
ally in a continuous manner. It is assumed that, the phases
are homogeneous and evenly distributed per unit volume of
the mixture. According to Rahmatulin’s model, the follow-
ing differential equation system explains the unstable
movements of the two-phase uncompressible fluids.
Eo

Fig. 1. Schematic diagram of the model.
q1

d~V 1

dt
¼ �f1N þ f1l1D~V 1 þ Kð~V 2 � ~V 1Þ; div~V 1 ¼ 0 ð1Þ

q2

d~V 2

dt
¼ �f2N þ f2l2D~V 2 þ Kð~V 1 � ~V 2Þ; div~V 2 ¼ 0 ð2Þ
As seen above, the equation system is obtained by using
Navier–Stokes and continuity equations for each phase.
Although there are a lot of studies in the literature about
the effect of electrical and magnetic fields on single phase
conducting flow (Rahmatulin, 1956; Fayzullayev, 1966;
Latipov, 1963), this is not the case for the studies about
the effect of electrical and magnetic fields on multi-phase
flow. It is known that diamagnetic and paramagnetic mate-
rials are not affected from magnetic fields. However, ferro-
magnetic materials are very sensitive to magnetic field.
Therefore, to use Rahmatulin model, we need to add the
following electromagnetic force expression (Eq. (3)) to Na-
vier–Stokes equation of magnetizable first phase.

gð~J � ~HÞ or ~J �~B ð3Þ
With this additional expression, we will have obtained an
equation system to examine the impact of electrical and
magnetic fields on non-magnetizable phase via magnetiz-
able phase. As a result, we used the following model in this
study:

q1

d~V 1

dt
¼ �f1N þ f1l1D~V 1 þ Kð~V 2 � ~V 1Þ þ ½~J �~B�;

div~V 1 ¼ 0 ð4Þ

q2

d~V 2

dt
¼ �f2N þ f2l2D~V 2 þ Kð~V 1 � ~V 2Þ; div~V 2 ¼ 0 ð5Þ

where ~J ¼ rð~E þ~B� ~V 1Þ ð6Þ
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2. Analytical solution

Consider steady, laminar, fully developed two-phase
flow in a horizontal circular pipe due to the action of a con-
stant pressure gradient. Given that, physical parameters,
electrical and magnetic field intensity vectors of the phases
are constant, i.e. ð~E ¼ E0;~B ¼ B0Þ; the vectors ~E and ~B are
perpendicular to each other and to the glass pipe (as shown
in Fig. 1) for maximum effect, and the flow is one-dimen-
sional, symmetric along the z-axis.

When these values are used at the equations at (4) and
(5), the following expressions are obtained:

q1

ou1

ot
¼ f1l1

o2u1

or2
þ 1

r
du1

dr

� �
þ Kðu2 � u1Þ

þ rðE0 � B0u1ÞB0 � f1N ð7Þ

q2

ou2

ot
¼ f2l2

o
2u2

or2
þ 1

r
du2

dr

� �
þ Kðu1 � u2Þ � f2N ð8Þ

where, u1 = u1z(r, t) = u1(r, t) and u2 = u2z(r, t) = u2 (r, t)
Initial conditions of the problem are selected as follows:

u1ðr; 0Þ ¼ 0; u2ðr; 0Þ ¼ 0 at t ¼ 0 ð9Þ

Boundary conditions of the problem are selected as
follows:

u1ðR; tÞ ¼ 0; u1ðR; tÞ ¼ 0 at r ¼ R ð10Þ

The Eqs. (7) and (8) of the model are solved with Laplace
method. The following time dependent Laplace transfor-
mation equation is used:

Uðr; sÞ ¼ U ¼
Z 1

0

uðr; tÞe�stdt ð11Þ

When this time dependent Laplace transformation equa-
tion is applied to Eqs. (7) and (8), the following equations
are obtained:

d2U 1

dr2
þ 1

r
dU 1

dr
� K þ K1

f1l1

þ s
m1

� �
U 1 þ

K
f1l1

U 2 ¼
NN 1

sl1

ð12Þ

d2U 2

dr2
þ 1

r
dU 2

dr
� K

f2l2

þ s
m2

� �
U 2 þ

K
f2l2

U 1 ¼
N

sl2

ð13Þ

To simplify the equations above, the following parameters
can be used:

a ¼ K þ K1

f1l1

; b ¼ K
f1l1

; d ¼ K
f2l2

; m1 ¼
N 1

l1

;

n1 ¼
1

l2

; m2 ¼
1

m1

; n2 ¼
1

m2

; N 1 ¼ 1� 1

Nf1

rE0B0;

K1 ¼ rB2
0

When these parameters are used in Eqs. (12) and (13), the
following equations are obtained.

d2U 1

dr2
þ 1

r
dU 1

dr
� ðaþ m2sÞU 1 þ bU 2 ¼

m1N
s

ð14Þ

d2U 2

dr2
þ 1

r
dU 2

dr
� ðd þ n2sÞU 2 þ dU 1 ¼

n1N
s

ð15Þ
Then the Laplace transformation for the initial condition
values (9) will be as follows:

U 1ðr; 0Þ ¼ 0; U 2ðr; 0Þ ¼ 0 ð16Þ

The Laplace transformation for the boundary condition
values (10) will be as follows:

U 1ðR; sÞ ¼ 0; U 2ðR; sÞ ¼ 0 ð17Þ

We chose D’Alambert method for the solution of simplified
Equations at (14) and (15). To solve the equation, by mul-
tiplying both sides of the Eq. (14) with A and adding it to
Eq. (15) side by side. If we choose A as in the following
expression,

A ¼ ðaþ m2sÞA� d
d þ n2s� bA

ð18Þ

The Eq. (18) is solved as follows:

A1;2 ¼
�½a� d þ sðm2� n2Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a� d þ sðm2 � n2Þ�2 þ 4db

q
2b

ð19Þ

Then the following equation is obtained:

o
2

or2
ðAU 1 þ U 2Þ þ

1

r
d

dr
ðAU 1 þ U 2Þ

� ðd þ n2s� bAÞ½AU 1 þ U 2� ¼
N
s
ðAm1 þ n1Þ ð20Þ

The general solution of this equation is:

AU 1 þ U 2 ¼ C1I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA

p
Þr þ C2K0

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA

p
Þr �

N
s ðAm1 þ n1Þ
d þ n2s� bA

ð21Þ

According to boundary conditions Eq. (17), C2 = 0 and
therefore C1 will be as follows:

C1 ¼ �
N
s ðAm1 þ n1Þ
d þ n2s� bA

ð22Þ

Then the general solution of the Eq. (21) will be as follows:

AU 1 þ U 2 ¼
NðAm1 þ n1Þ

sðd þ n2s� bAÞ
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA
p

Þr
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA
p

ÞR
� 1

� �
ð23Þ

When we replace the roots of A1 and A2 with A in Eq. (23),
the following is obtained:

A1U 1 þ U 2 ¼
NðA1m1 þ n1Þ

sðd þ n2s� bA1Þ
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA1

p
Þr

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA1

p
ÞR
� 1

� �
ð24Þ

A2U 1 þ U 2 ¼
NðA2m1 þ n1Þ

sðd þ n2s� bA2Þ
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA2

p
Þr

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA2

p
ÞR
� 1

� �
ð25Þ

Then by using Eqs. (24) and (25), the Laplace transforma-
tions of the flow rates of the phases are found as follows:
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Fig. 3. The effect of the electrical and magnetic fields on the flow along the
pipe diameter at different B0 and E0.
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Fig. 4. The local velocity profiles of the phases along the pipe diameter at
different B0 and E0.
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U 1 ¼
N

sðA1 � A2Þ
A1m1 þ n1

D2
1

I0ðD1rÞ
I0ðD1RÞ � 1

� ��

�A2m1 þ n1

D2
2

I0ðD2rÞ
I0ðD2RÞ � 1

� ��
ð26Þ

U 2 ¼
N

sðA2 � A1Þ
A2

A1m1 þ n1

D2
1

I0ðD1rÞ
I0ðD1RÞ � 1

� ��

�A1

A2m1 þ n1

D2
2

I0ðD2rÞ
I0ðD2RÞ � 1

� ��
ð27Þ

where, D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA1

p
and D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ n2s� bA2

p

By using Reverse Laplace transformation approach, the
coordinate based expressions for the unsteady state of
phases is found. If we want to use these equations for the
steady state flow, local velocity expression for each phase
will be as follows:

u1ðrÞ ¼
N

A1k � A2k

A1km1 þ n1

ðM1kÞ2
I0ðM1kÞr
I0ðM1kÞR

� 1

� �"

�A2km1 þ n1

ðM2kÞ2
I0ðM2kÞr
I0ðM2kÞR

� 1

� �#
ð28Þ

u2ðrÞ ¼
N

A2k � A1k
A2k

A1km1 þ n1

ðM1kÞ2
I0ðM1kÞr
I0ðM1kÞR

� 1

� �"

�A1k
A2km1 þ n1

ðM2kÞ2
I0ðM2kÞr
I0ðM2kÞR

� 1

� �#
ð29Þ

To simplify the equations, following terms are used.

A1k;2k ¼
�½a� d� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a� d�2 þ 4db

q
2b

M1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � bA1k

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 aþ d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bd

q� �s
and

M2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � bA2k

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 aþ d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bd

q� �s

The velocity profiles of two-phases according to the calcu-
lations based on Eqs. (28) and (29) are shown in Figs. 2–5.
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Fig. 2. The effect of the magnetic field on the local velocity of the phases
along the pipe radius at selected points.

Fig. 5. The effect of the electrical and magnetic field on the flow along the
pipe radius at selected points.
The specifications of the materials used in calculations are
as follows: The fluid with subscript 1 is iron powder
(f1 = 0.3, l1 = 1.10�5 kg/ms) and the fluid with subscript
2 is pure water (f2 = 0.7, l2 = 10�3 kg/ms). Also, the fol-
lowing values are used for calculations: Interaction coeffi-
cient, K = 520 kgs/m4, pressure gradient, N ¼ oP

oz ¼
�1 Pa=m, pipe radius, R = 0.01 m, electrical conductivity
of iron, r ¼ 103 1

Ohm m
, magnetization coefficient, g = 1000,

induction of magnetic field, B0 = 0–1 T, electrical field
intensity, E0 = 0 � 4 · 10�5 V/m.
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3. Result and discussion

In this study, the magnetic and electrical field effects of
the two-phase flow steady flows in the circular glass pipe
are investigated theoretically. The Navier–Stokes equations
of two-phase flow is analytically solved by using the meth-
ods of Laplace transformation and D’Alambert. By using
the analytical solution, local velocity profile expressions
for each phase are obtained in terms of electrical field
intensity, magnetic field induction, time, coordinates, phys-
ical parameters of the fluids like density, dynamic viscosity
and electrical conductivity. Moreover, expressions for the
local velocity profiles of both phases are derived. Then
the effect of the electrical and magnetic field on the two-
phase steady state flow is examined in detail. The local
velocity profile of the phases are found with the following
values: The physical attributes of the fluids, radius of the
pipe, pressure gradient are constant; electrical field inten-
sity E0 takes values between 0 and 4 · 10�5 V/m with
1 · 10�5 V/m step size; magnetic field induction B0 takes
values between 0 and 1 T with 0.2 T step size. The results
of the analytical solution are shown in Figs. 2–5.

As it is also conformed by Eq. (1), electrical field itself
cannot have any effect on the momentum of the flow since
it cannot form a force by itself. Therefore, the effect of dif-
ferent intensity levels of the magnetic field on the fluid flow
when electrical field intensity is zero is shown in Fig. 2. As
seen from the figure, along the pipe radius (r = 0, r = 0.004
and r = 0.008 m) increasing magnetic field intensity causes
the local velocity of the flow to decrease. While there is
more decrease in the velocity at the first values of the
applied magnetic field intensity, increasing magnetic field
intensity causes less decrease in the velocity. The amount
of decrease when B0 = 1 T at r = 0 point is found as 97%
for the first phase, 93% for the second phase; at
r = 0.004 m point it is found as 96% for the first phase,
92% for the second phase and at r = 0.008 m point it is
found as 94% for the first phase, 87% for the second phase.
As it is also seen from these values, the decrease of the local
velocity of the phases is higher at the center of the pipe and
it gets smaller along the pipe radius towards the wall of the
pipe. The cause of the decrease in the local velocity of the
first phase is the magnetic force against the flow which is
caused by the magnetic field perpendicular to the flow.
The cause of the decrease in the local velocity of the second
phase is the interaction with the first phase. In other words,
magnetic field will affect the flow of second phase which has
low conductivity and is not magnetizable, via the first
phase which has high conductivity and is magnetizable.

The Figs. 3–5 show how the electrical field and magnetic
field which are perpendicular to each other and to the flow,
affect the flow. Fig. 3 shows the local velocity profiles of the
phases where B0 is constant and E0 changes. Fig. 4 shows
the local velocity profiles of the phases where both B0

and E0 changes. Fig. 5 shows the local velocity profiles of
the phases at some selected points where both B0 and E0

changes.
The figures clearly show the decrease in the local velocity
values of the flow of the phases due to the simultaneous
application of the electrical and magnetic fields. When cal-
culations are done according to the curves of Fig. 3 to find
the change from B0 = 0 T and E0 = 0 V/m to B0 = 0.2 T
and E0 = 1 · 10�5 V/m, it is found that the decrease of
the local velocity for the first phase is 52.4% and for the
second phase it is 49.5%. The change from B0 = 0.2 T,
E0 = 1 · 10�5 V/m to B0 = 0.2 T, E0 = 0 V/m causes a dif-
ference of 0.18% at the local velocity profiles of the phases.
Therefore, the curves of these states overlap at the figure.
When B0 and E0 are doubled from the values of Fig. 3,
which was B0 = 0.2 T, E0 = 1 · 10�5 V/m, the local veloc-
ity of the first phase decreases by an additional 12.37%
and the local velocity of the second phase decreases by
an additional 12.23% (approximately 35%) as seen at
Fig. 4.

To be able to see the effect of both magnetic and electri-
cal field together on the flow, the variation of the local
velocity profiles of the phases in relation to pipe radius
(at the points r = 0, r = 0.004 and r = 0.008 m), magnetic
field induction and electrical field intensity are shown at
Fig. 5. As seen from the figure, there is decrease in the local
velocity profile of the flow of the phases even when it is
exposed to both electrical and magnetic fields simulta-
neously. When B0 = 0.8 T and E0 = 4.10�5 V/m, at the
r = 0 point the decrease is 95.6% for the first phase,
91.83% for the second phase; at the r = 0.004 m point the
decrease is 95% for the first phase, 90.75% for the second
phase and at the r = 0.008 m point the decrease is 91.65%
for the first phase, 84.76% for the second phase. As men-
tioned above, the decrease of the local velocity of the
phases is higher at the center of the pipe and it gets smaller
along the pipe radius towards the wall of the pipe.

4. Conclusion

In this paper, the effect of the electrical and magnetic
field which is applied perpendicular to the flow and each
other on the two-phase steady flow in the circular glass
pipe has been investigated. The governing equations for
this investigation was derived and solved analytically.
For the two-phase flow, where first one has high electrical
conductivity and it is magnetizable (first phase) and second
one has low electrical conductivity and it is not magnetiz-
able (second phase); the following conclusion is obtained:

(i) When only the magnetic field is applied perpendicular
to the flow of the mixture, local flow velocity of the
first phase is decreased due to the direct effect of
the magnetic field; and local flow velocity of the sec-
ond phase is decreased due to the indirect effect of the
magnetic field which is caused by the interaction of
the phases.

(ii) When the magnetic and electrical fields perpendicular
to each other and to the flow are applied, the local
flow velocity of the first phase is decreased due to
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the direct effect and the local flow velocity of the sec-
ond phase is decreased due to the indirect effect. This
decreases in the local velocity of the phases are depen-
dent on electrical field direction.

(iii) When only electrical field is applied, none of the
phases is affected.

As a result, it is seen that the electromagnetic force is
effecting the nonconductor phase of the mixture through
the conductor phase which it can directly affect.
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